
A

Major Project

On

SOCIAL DISTANCE PREDICTOR USING DEEP LEARNING
(Submitted in partial fulfilment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

K.Ankith Sai Reddy (177R1A0522)

Ch. Dilip Goud (177R1A0507)

V. Prashanth (177R1A0552)

Under the Guidance of

D. Vigneswar Rao

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

Accredited by NAAC, NBA, Permanently Affiliated by JNTUH, Approved by AICTE, New

Delhi) Recognized Under Section 2(f) & 12(B) of the UGC ACT. 1956, Kandlakoya (V),

Medchal Road, Hyderabad-501401.

2017-2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “SOCIAL DISTANCE PREDICTOR” being

submitted by K.Ankith Sai Reddy (177R1A0522), V. Prashanth (177R1A0552), Ch. Dilip

Goud(177R1A0507), in partial fulfillments of the requirements for the award of the degree of

B.Tech in Computer Science and Engineering of the Jawaharlal Nehru Technological

University Hyderabad, during the year 2020-2021. It is certified that they have completed the

project satisfactorily.

DR. M. VARAPRASAD RAO DR. A. RAJI REDDY

 INTERNAL GUIDE DIRECTOR

DR. K. SRUJAN RAJU

 HOD EXTERNAL EXAMINER

Submitted for Viva-voce Examination held on ______________

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our

gratitude to the people who have been instrumental in the successful completion of this project.

We take this opportunity to express my profound gratitude and deep regard to my guide: D.

Vigneswar Rao, Professor for his exemplary guidance, monitoring and constant

encouragement throughout the project work. The blessing, help and guidance given by him

shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to Project Review

Committee (PRC) Coordinators: Mr. J. Narasimha Rao, Mr. B. P. Deepak Kumar, Mr. K.

Murali, Dr. Suwarna Gothane and Mr. B. Ramji for their cordial support, valuable

information and guidance, which helped us in completing this task through various stages.

We are also thankful to the Head of the Department Dr. K. Srujan Raju for providing

excellent infrastructure and a nice atmosphere for completing this project successfully. We are

obliged to our Director Dr. A. Raji Reddy for being cooperative throughout the course of this

project. We would like to express our sincere gratitude to our Chairman Sri. Ch. Gopal Reddy

for his encouragement throughout the course of this project.

The guidance and support received from all the members of CMR TECHNICAL

CAMPUS who contributed and who are contributing to this project, was vital for the success

of the project. We are grateful for their constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement without which this assignment would not be possible. We sincerely

acknowledge and thank all those who gave support directly and indirectly in completion of this

project.

K.Ankith Sai Reddy (177R1A0522)

V. Prashanth (177R1A0552)

Ch.Dilip Goud (177R1A0507)

 SOCIAL DISTANCE PREDICTOR

 CMRTC 4

ABSTRACT

 The objective of the model is to make the detection of social distance between people

who are roaming on the roads and the footpaths or anywhere outdoors or in the society easy

and more reliable. We know that when a naked human eye monitors the, accuracy is

considerably low and also a human eye cannot monitor more than one group at a time.

Therefore this system is introduced to make the process easy, accurate and consistent in

monitoring people at all times by using 24/7 surveillance cameras.

 This system is using the YoloV3 (You Only Look Once) which is the fastest object

detection algorithm and contains several classes of objects for object detection. This algorithm

is not only used for object detection but also used in finding the position of the object and

tracking the movement of the object from one position to another. This feature will be used in

finding the distance of the objects whose coordinates will further help in finding out the

distance between each object in real time and determine whether they are following social

distancing or not.

 We also have a feature in YoloV3 to train the algorithm using custom datasets, since we

are only using the algorithm for human subjects, we are going to train the data set based on

human’s classification. We train the algorithm using COCO. COCO is a large-scale object

detection, segmentation and captioning data set and has several other features which help us

train the algorithm for the detection of objects.

 In this system the prediction of the distance between objects in real time is taken place by

using methods like Euclidean distance and centroid between the coordinates of the objects. The

coordinates are given by the YoloV3 algorithm.

 The system is designed to make the monitoring of the social distance easy, accurate and

consistent at all times without using any means of manpower and by simply providing 24/7

surveillance cameras. This reduces human cost and at the same time increases the ability to

monitor more people at a time maintaining the accuracy. All this combined makes this system

more effective, efficient and accurate.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 5

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO

3.1.1 Architecture of YOLO 13

3.1.2.1 Project Architecture 27

3.1.2.2 YOLO Implemented for human 28

3.1.2.3 Coordinates of Bounding boxes 30

3.1.2.4 Social Distance Predictor 31

3.2 Use Case Diagram 32

3.3 Class Diagram 33

3.4 Sequence Diagram 34

3.5 Activity Diagram 35

5.2.1 Input Sample Frame 42

5.2.2 Input Sample Frame 43

5.2.3 Input Sample Frame 43

5.2.4 Input Sample Frame 44

5.3.1 Output Processed Sample Frame 45

5.3.2 Output Processed Sample Frame 45

5.3.3 Output Processed Sample Frame 46

5.3.4 Output Processed Sample Frame 46

 SOCIAL DISTANCE PREDICTOR

 CMRTC 6

TABLE OF CONTENTS

1. INTRODUCTION

1.1 Project Scope 7

1.2 Project Purpose 7

1.3 Project Features 7

2. SYSTEM ANALYSIS

2.1 Problem Definition 8

2.2 Existing System 8

2.3 Proposed System 9

2.4 Feasibility Study 10

2.5 Software Requirement Specification 11

2.6 Technologies Used In Development 12

3. ARCHITECTURE

3.1 Project Architecture 13

3.2 Use Case Diagram 32

3.3 Class Diagram 33

3.4 Sequence Diagram 34

3.5 Activity Diagram 35

4. IMPLEMENTATION SAMPLE CODE

4.1 Social Distance Detector.py 36

4.2 Requirement.txt 39

4.3 Detection.py 39

4.4 Social_distance_config.py 41

5. SCREEN SHOTS

5.1 Introduction 42

5.2 Input Sample Frames 42

5.3 Output Processed Sample Frames 44

6. TESTING

6.1 Introduction to Testing 47

6.2 Types of Testing 47

6.3 Test Cases 48

7. CONCLUSION

7.1 Project Conclusion 49

7.2 Future Enhancements 49

8. BIBLIOGRAPHY

8.1 Reference 50

 SOCIAL DISTANCE PREDICTOR

 CMRTC 7

1. INTRODUCTION

1.1 PROJECT SCOPE

The project titled as “Social Distance Predictor” is a Machine Learning based

application which trains itself and improves every time on new scenarios. This project aims to

design a social distance predictor which verifies the distance between two or more people is

safe and is according to social distance norms provided by the government body. This Project

helps monitor social distance between people in real time and help admins warn the people at

public places. This system is more efficient, effective and accurate. At these hard times of

covid, this helps in reducing immense man power for monitoring people and also drastically

increases the accuracy to help people maintain social distance.

1.2 PROJECT PURPOSE

Covid - 19 is a deadly and a very dangerous disease which is causing chaos in every

country and every place possible in this world. There have been strict rules created by the

national body and world organisations to help prevent this deadly virus from spreading into

communities. One of which is to maintain Social Distance, people must maintain a distance of

1.5 Meters between each other in order to maintain social distance. We know that in public

places where there is a huge crowd it is difficult to monitor people who maintain social distance

especially in areas where there is dense population. In order to do so we have created this

system which is based on machine learning model where it measures the social distance

between two or more people in real time with the help of CCTV Cameras. The live footage

from the CCTV cameras will go to the system where the system processes the social distance

between two people and sends the output video to the admin and thus the admin could announce

and take preliminary precautions.

1.3 PROJECT FEATURES

Our proposed system aims to design a Social distance predictor based on computer

vision that can adapt to different crowd situations. This system uses YOLO object detection

algorithms which is trained on the COCO dataset which is classified on human subjects.

Therefore YOLO, according to its trained dataset detects the human subjects and gives the

centroid coordinates of the human subjects and our program takes the coordinates of the

centroid and measures the social distance between two or more centroids by calculating the

Euclidean distance between them. Thus the system shows the classified human subjects in

boxes and the color is given based on social distance, that is the human subjects those who

maintain the social distance are classified in green boxes and those who don’t in red boxes thus

indicating the admin of who and who is not maintaining the social distance regulations.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 8

2. SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The System

is studied to the minute details and analyzed. The system analyst plays an important role to

clean the data-bases on an everyday basis so that every day we have a clean database of 0 leaves

approved and no leaves from the previous day are present in the present day.

2.1 PROBLEM DEFINITION

The problem of the existing system is, in these tough times of covid - 19 social

distancing is a very important precaution to be taken by the public especially in the public

places therefore the crowd will only follow the norms if they are always been warned and

monitored. The traditional system initially was to keep the guards at the public place or the

police men to maintain and keep a watch on the public of whether they are maintaining social

distance and wearing masks, now there is a huge crowd everywhere and we need a large force

which consists of more personnel to monitor and warn the crowd. Now also a human can only

monitor a few people who are in his field of vision, and chances are not all people are warned

by the personnel. Also the accuracy has been compromised since human beings cannot exactly

measure the distance between two people. Therefore all these limitations have been solved in

the proposed system. We have developed a system which would solve accuracy, require less

personnel and is effective and efficient and uses computer vision and machine learning object

detection which helps us detect the human subjects and thus helps us find out social distance

between two or more people using algorithmic formulas.

2.2 EXISTING SYSTEM

In the existing system only we require more police personnel and more

manpower in order to monitor people who are not maintaining social distance. Now

there are many ways which the government bodies have defined to monitor social

distance between people.

● Police personnel - The police personnel are taking care in each area checking

people who and who are not maintaining social distancing in public places and

even in the vehicles it has been mandatory to maintain social distancing that is

only the driver and one passenger sitting diagonal to the driver is allowed to

travel that too in an urgent situation.

● Lockdowns - most of the public places have been locked down for a few days

and only the most essential shops have been open to take groceries and they have

also been limited to be open until a certain time.

● Foot Marks - Now if someone has travelled in a public transport these days they

might have noticed that there are footmarks and cross marks on the seats

 SOCIAL DISTANCE PREDICTOR

 CMRTC 9

indicating that people must follow social distance and only stand there where

there are footmarks and only sit there where there is no cross mark on the seat.

● CCTV Surveillance: Nowadays in public places there is 24/7 surveillance

running and people are being manually pointed out by the admin who is sitting

in the control center of the cameras.

LIMITATIONS:

● More man power is required

● Time consuming for the person who monitors the people

● Needs to follow a lot of additional precautions

● Need to maintain a record of how many people are not maintaining social distancing

● Less accurate in real time

● Less efficient due to lack of monitoring of huge numbers of people in the crowded

places and could only focus on those who are in the field of vision of the personnel

monitoring the social distance maintenance.

2.3 PROPOSED SYSTEM

The aim of the proposed system is to solve all the problems and loopholes of the existing

system. This system has been developed based on computer vision and machine learning which

is a supervised trained model. The proposed system using the CCTV footage using that as the

input video applying computer vision on it and detects the people by the algorithm known as

YOLO which stands for you only look once, and returns the coordinates of the centroids of the

detected human subjects. With the help of those coordinates we measure Euclidean distance

and check whether the people are maintaining social distance or not. Here we require very few

people, the person who is maintaining the system properly and the admin who monitors the

CCTV surveillance.

 The admin who monitors the CCTV surveillance is shown the output processed video.

The ones who maintain social distance that is 1.5 Meters are shown in green boxes and the ones

who don’t in red boxes. This model is more accurate and can monitor more people who are not

maintaining social distance at a time. The object detection algorithm we have used is fast and

accurate which has been trained to classify human subjects.

ADVANTAGES

● Ensures accuracy and efficiency.

● Requires less manpower.

● Reduces the overhead of maintaining shifts of people during day and night.

● Depends on CCTV surveillance which is 24/7/

 SOCIAL DISTANCE PREDICTOR

 CMRTC 10

● Minimum time needed for the various processing.

● Greater efficiency.

● Over-all better and easier service.

● User friendliness.

● Also gives the count of people who are not maintaining social distance therefore no

need to keep a track of them.

2.4 FEASIBILITY STUDY

The feasibility of the project is analysed in this phase and the business proposal is put forth

with a very general plan for the project and some cost estimates. During system analysis the

feasibility study of the proposed system is to be carried out. This is to ensure that the

proposed system is not a burden to the company.

Three key considerations involved in the feasibility analysis are

➢ Economic Feasibility

➢ Technical Feasibility

➢ Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure that effort is

concentrated on a project, which will give best, return at the earliest. One of the factors,

which affect the development of a new system, is the cost it would require. The following are

some of the important financial questions asked during preliminary investigation:

• The costs conduct a full system investigation.

• The cost of the hardware and software.

• The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual cost to spend for the

proposed system. As the cameras are preinstalled at signals in many major cities, timers are

available and surveillance centres are also present which means these centres can be used for

running the algorithm to calculate signal time. Hence, the system can be developed because

of its economic feasibility.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 11

2.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical requirements

of the system. Any system developed must not have a high demand on the available technical

resources. The developed system must have a modest requirement, as only minimal or null

changes are required for implementing this system.

2.4.3 SOCIAL FEASIBILITY

This includes the following questions:

• Is there sufficient support for the users?

• Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when developed and

installed. All behavioural aspects are considered carefully and conclude that the project is

socially feasible.

2.5 SOFTWARE REQUIREMENT SPECIFICATION

A software requirements specification (SRS) is a document that captures a complete

description about how the system is expected to perform. It is usually signed off at the end of

requirements engineering phase.

2.5.1 USER REQUIREMENTS

User requirements, often referred to as user needs, describe what the user does with the

system, such as what activities that users must be able to perform. User requirements are

generally documented in a User Requirements Document (URD) using narrative text. User

requirements are generally signed off by the user and used as the primary input for creating

system requirements.

2.5.2 SOFTWARE REQUIREMENT

● Python 3.0 or above installed

● Windows 10 or macOS X or Ubuntu

● Tensorflow and openCV

2.5.3 HARDWARE REQUIREMENT

● Core i3 4th gen or more

● 4GB RAM or more

● SSD storage preferred

● GPU preferred to train the model

 SOCIAL DISTANCE PREDICTOR

 CMRTC 12

● Camera Feed for input

2.6 TECHNOLOGIES USED IN DEVELOPMENT

● Language: python 3.0

● IDE: Visual Studio Code or jupyter notebook

● Backend: Artificial Intelligence and Machine Learning

● Major libraries: Tensor flow and openCV

● Algorithm: YOLO v3

● Dataset: COCO dataset based on human subjects

● Deployment: Git and github

 SOCIAL DISTANCE PREDICTOR

 CMRTC 13

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE

Initially before understanding the project architecture it is important to understand the

architecture of the YOLO algorithm. YOLO predicts multiple bounding boxes per grid cell. At

training time, we only want one bounding box predictor to be responsible for each object. We

assign one predictor to be “responsible” for predicting an object based on which prediction has

the highest current IOU with the ground truth. This leads to specialization between the

bounding box predictors. Each predictor gets better at predicting certain sizes, aspect ratios, or

classes of object, improving overall recall.

Fig. 3.1.1 Architecture of YOLO

The YOLO framework (You Only Look Once) on the other hand, deals with object

detection in a different way. It takes the entire image in a single instance and predicts the

bounding box coordinates and class probabilities for these boxes. The biggest advantage of

using YOLO is its superb speed – it’s incredibly fast and can process 45 frames per second.

YOLO also understands generalized object representation. This is one of the best algorithms

for object detection and has shown a comparatively similar performance to the R-CNN

algorithms.

How Does Yolo Framework work?

 SOCIAL DISTANCE PREDICTOR

 CMRTC 14

Now that we have grasp on why YOLO is such a useful framework, let’s jump into how

it actually works. In this section, I have mentioned the steps followed by YOLO for detecting

objects in a given image.

● YOLO first takes an input image:

● The framework then divides the input image into grids (say a 3 X 3 grid):

● Image classification and localization are applied on each grid. YOLO then predicts the

bounding boxes and their corresponding class probabilities for objects (if any are found,

of course).

 SOCIAL DISTANCE PREDICTOR

 CMRTC 15

Pretty straightforward, isn’t it? Let’s break down each step to get a more

granular understanding of what we just learned.

We need to pass the labelled data to the model in order to train it. Suppose we

have divided the image into a grid of size 3 X 3 and there are a total of 3 classes which

we want the objects to be classified into. Let’s say the classes are Pedestrian, Car, and

Motorcycle respectively. So, for each grid cell, the label y will be an eight-dimensional

vector:

● pc defines whether an object is present in the grid or not (it is the probability)

● bx, by, bh, bw specify the bounding box if there is an object

● c1, c2, c3 represent the classes. So, if the object is a car, c2 will be 1 and c1 & c3 will

be 0, and so on.

Let’s say we select the first grid from the above example:

Since there is no object in this grid, pc will be zero and the y label for this grid will be:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 16

Here, ‘?’ means that it doesn’t matter what bx, by, bh, bw, c1, c2, and c3 contain as there is no

object in the grid. Let’s take another grid in which we have a car (c2 = 1):

Before we write the y label for this grid, it’s important to first understand how YOLO decides

whether there actually is an object in the grid. In the above image, there are two objects (two

cars), so YOLO will take the mid-point of these two objects and these objects will be assigned

to the grid which contains the mid-point of these objects. The y label for the centre left grid

with the car will be:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 17

Since there is an object in this grid, pc will be equal to 1. bx, by, bh, bw will be calculated

relative to the particular grid cell we are dealing with. Since car is the second class, c2 = 1 and

c1 and c3 = 0. So, for each of the 9 grids, we will have an eight-dimensional output vector.

This output will have a shape of 3 X 3 X 8.

So now we have an input image and its corresponding target vector. Using the above example

(input image – 100 X 100 X 3, output – 3 X 3 X 8), our model will be trained as follows:

We will run both forward and backward propagation to train our model. During the testing

phase, we pass an image to the model and run forward propagation until we get an output y. In

order to keep things simple, I have explained this using a 3 X 3 grid here, but generally in real-

world scenarios we take larger grids (perhaps 19 X 19).

Even if an object spans out to more than one grid, it will only be assigned to a single grid in

which its mid-point is located. We can reduce the chances of multiple objects appearing in the

same grid cell by increasing the more number of grids (19 X 19, for example).

How to Encode Bounding boxes:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 18

 As I mentioned earlier, bx, by, bh, and bw are calculated relative to the grid cell we are

dealing with. Let’s understand this concept with an example. Consider the center-right grid

which contains a car:

So, bx, by, bh, and bw will be calculated relative to this grid only. The y label for this grid will

be:

pc = 1 since there is an object in this grid and since it is a car, c2 = 1. Now, let’s see how to

decide bx, by, bh, and bw. In YOLO, the coordinates assigned to all the grids are:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 19

bx, by are the x and y coordinates of the midpoint of the object with respect to this grid. In this

case, it will be (around) bx = 0.4 and by = 0.3:

bh is the ratio of the height of the bounding box (red box in the above example) to the height

of the corresponding grid cell, which in our case is around 0.9. So, bh = 0.9. bw is the ratio of

the width of the bounding box to the width of the grid cell. So, bw= 0.5 (approximately). The

y label for this grid will be:

Notice here that bx and by will always range between 0 and 1 as the midpoint will always lie

within the grid. Whereas bh and bw can be more than 1 in case the dimensions of the bounding

box are more than the dimension of the grid.

In the next section, we will look at more ideas that can potentially help us in making this

algorithm’s performance even better.

INTERSECTION OVER UNION AND NON-MAX SUPPRESSION

Here’s some food for thought – how can we decide whether the predicted bounding box is

giving us a good outcome (or a bad one)? This is where Intersection over Union comes into the

picture. It calculates the intersection over union of the actual bounding box and the predicted

bonding box. Consider the actual and predicted bounding boxes for a car as shown below:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 20

Here, the red box is the actual bounding box and the blue box is the predicted one. How can

we decide whether it is a good prediction or not? IoU, or Intersection over Union, will calculate

the area of the intersection over union of these two boxes. That area will be:

IoU = Area of the intersection / Area of the union, i.e. IoU = Area of yellow box / Area of green

box

If IoU is greater than 0.5, we can say that the prediction is good enough. 0.5 is an arbitrary

threshold we have taken here, but it can be changed according to your specific problem.

Intuitively, the more you increase the threshold, the better the predictions become.

There is one more technique that can improve the output of YOLO significantly – Non-Max

Suppression.

One of the most common problems with object detection algorithms is that rather than detecting

an object just once, they might detect it multiple times. Consider the below image:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 21

Here, the cars are identified more than once. The Non-Max Suppression technique cleans up

this up so that we get only a single detection per object. Let’s see how this approach works.

1. It first looks at the probabilities associated with each detection and takes the largest one. In

the above image, 0.9 is the highest probability, so the box with 0.9 probability will be selected

first:

2. Now, it looks at all the other boxes in the image. The boxes which have high IoU with the

current box are suppressed. So, the boxes with 0.6 and 0.7 probabilities will be suppressed in

our example:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 22

3. After the boxes have been suppressed, it selects the next box from all the boxes with the

highest probability, which is 0.8 in our case:

4. Again, it will look at the IoU of this box with the remaining boxes and compress the boxes

with a high IoU:

5. We repeat these steps until all the boxes have either been selected or compressed and we get

the final bounding boxes:

This is what Non-Max Suppression is all about. We are taking the boxes with maximum

probability and suppressing the close-by boxes with non-max probabilities. Let’s quickly

summarize the points which we’ve seen in this section about the Non-Max suppression

algorithm:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 23

1. Discard all the boxes having probabilities less than or equal to a pre-defined threshold (say,

0.5)

2. For the remaining boxes:

1. Pick the box with the highest probability and take that as the output prediction

2. Discard any other box which has IoU greater than the threshold with the output box

from the above step

3. Repeat step 2 until all the boxes are either taken as the output prediction or discarded

There is another method we can use to improve the perform of a YOLO algorithm –

let’s check it out.

ANCHOR BOXES

 We have seen that each grid can only identify one object. But what if there are multiple

objects in a single grid? That can so often be the case in reality. And that leads us to the concept

of anchor boxes. Consider the following image, divided into a 3 X 3 grid:

Remember how we assigned an object to a grid? We took the midpoint of the object

and based on its location, assigned the object to the corresponding grid. In the above example,

the midpoint of both the objects lies in the same grid. This is how the actual bounding boxes

for the objects will be:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 24

 We will only be getting one of the two boxes, either for the car or for the person. But if

we use anchor boxes, we might be able to output both boxes! How do we go about doing this?

First, we pre-define two different shapes called anchor boxes or anchor box shapes. Now, for

each grid, instead of having one output, we will have two outputs. We can always increase the

number of anchor boxes as well. I have taken two here to make the concept easy to understand:

This is how the y label for YOLO without anchor boxes looks like:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 25

What do you think the y label will be if we have 2 anchor boxes? I want you to take a moment

to ponder this before reading further. Got it? The y label will be:

 the first 8 rows belong to anchor box 1 and the remaining 8 belongs to anchor box 2.

The objects are assigned to the anchor boxes based on the similarity of the bounding boxes and

the anchor box shape. Since the shape of anchor box 1 is similar to the bounding box for the

person, the latter will be assigned to anchor box 1 and the car will be assigned to anchor box

2. The output in this case, instead of 3 X 3 X 8 (using a 3 X 3 grid and 3 classes), will be 3 X

 SOCIAL DISTANCE PREDICTOR

 CMRTC 26

3 X 16 (since we are using 2 anchors). So, for each grid, we can detect two or more objects

based on the number of anchors. Let’s combine all the ideas we have covered so far and

integrate them into the YOLO framework.

3.1.1 COCO Dataset

 COCO (Common Object in Context) is a large image dataset designed for object

detection, segmentation, person key points detection, stuff segmentation, and caption

generation. This package provides Matlab, Python, and Lua APIs that assists in loading,

parsing, and visualizing the annotations in COCO. For our system we used the COCO dataset

to classify for the human subjects.

3.1.2 Project Architecture (System):

 SOCIAL DISTANCE PREDICTOR

 CMRTC 27

 Fig 3.1.2.1 Project Architecture

The recorded overhead data sets (input video converted to frames) are split into training

and testing sets. A deep learning-based detection paradigm is used to detect individuals in

sequences.

There are a variety of object detection models available, due to the best performance

we are using YOLO V3 algorithm. The model used single-stage network architecture to

estimate the bounding boxes and class probabilities. The model was originally trained on the

COCO (Common objects in context) data set. For overhead view person detection, transfer

learning is implemented to enhance the detection model's efficiency, and a new layer of

overhead training is added with the existing architecture.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 28

After detection, the bounding box information, mainly centroid information, is used to

compute each bounding box centroid distance. We used Euclidean distance and calculated the

distance between each detected bounding box of peoples. Following computing centroid

distance, a predefined threshold is used to check either the distance among any two bounding

box centroids is less than the configured number of pixels or not. If two people are close to

each other and the distance value violates the minimum social distance threshold. The bounding

box information is stored in a violation set, and the color of the bounding box is

updated/changed to red. A centroid tracking algorithm is adopted for tracking so that it helps

in tracking of those people who violate/breach the social distancing threshold. At the output,

the model displays the information about the total number of social distancing violations along

with detected people bounding boxes and centroids.

In this work, YOLOv3 is used for human detection as it improves predictive accuracy,

particularly for small-scale objects. The main advantage is that it has adjusted network structure

for multi-scale object detection. Furthermore, for object classification, it uses various

independent logistic rather than softmax. The model's overall architecture is presented in Fig.

3.1.2.2 ; it can be seen that feature learning is performed using the convolutional layers, also

called Residual Blocks. The blocks are made up of many convolutional layers and skip

connections. The model's unique characteristic is that it performs detection at three separate

scales, as depicted in Fig. 3.1.2.2 .The convolutional layers with a given stride are practiced to

downsample the feature map and transfer invariant-sized features (Redmon & Farhadi, 2018).

Three feature maps, as shown in Fig. 3.1.2.2, are utilized for object detection.

 Fig. 3.1.2.2 Yolo Implemented for Human Detection

The architecture shown in Fig. 3.1.2.2 is trained using an overhead data set. For that

purpose, a transfer learning approach is adopted, that enhance the efficiency of the model. With

 SOCIAL DISTANCE PREDICTOR

 CMRTC 29

transfer learning, the model is additionally trained without dropping the valuable information

of the existing model. Further, the additional overhead data set trained layer is appended with

the existing architecture. In this way, the model takes advantage of the pre-trained and newly

trained information, and both detection results are further deliver better and faster detection

results.

The architecture shown in Fig. 3.1.2.2 used a single-stage network for the entire input image

to predict the bounding box and class probability of detected objects. For feature extraction,

the architecture utilizes convolution layers, and for class prediction, fully connected layers are

used. During human identification, as seen in Fig. 3.1.2.2, the input frame is divided into a

region of S×S, also called grid cells. These cells are related to bounding box estimation and

class probabilities. It predicts the probability of whether the center of the person bounding box

is in the grid cell or not:

Conf(p)=Pr(p)×IOU(pred,actual)

 Pr(p) indicates that whether the person present is in the detected bounding box or not. The

value of Pr(p) is 1 for yes and 0 for not. IoU(pred,actual) determines the Intersection Over

Union of the actual and predicted bounding box. It is defined as (Redmon & Farhadi, 2018):

IoU(pred,actual)=areaBoxT∩BoxP/BoxT∪BoxP

where the ground truth box (actual) manually labeled in the training data set represented with

BoxT, and the predicted bounding box is displayed as BoxP. area presents the area of

intersection. An acceptable area is predicted and decided for each detected person in the input

frame. The confidence value is applied after prediction to achieve the optimal bounding box.

For each predicted bounding box, h,w,x,y are estimated, where bounding box coordinates are

defined by x,y, and width and height are determined by w,h. The model produces the following

predicted bounding box values as seen in Fig. 3.1.2.3 and Eq. (3) (Redmon & Farhadi, 2018);

bx=σ(tx)+cx

by=σ(ty)+cy

bw=pwetw

bh=pwhth

 SOCIAL DISTANCE PREDICTOR

 CMRTC 30

Fig. 3.1.2.3 Detection Coordinates of person bounding boxes

In Eq. (3), bx,by,bw,bh are predicted coordinate bounding boxes, where the

coordinates’ center is represented as x,y and width and height with w,h. tw,th,tx,ty, defined the

network output and cx,cy are used to correspond the top-left coordinates of the grid cell as

shown in Fig. 3.1.2.3, while the pw and ph are width and height of anchors.

A threshold value is defined that process the high confidence values and discards the

low confidence values. Using non-maximal suppression, the final location parameters are

derived for the detected bounding box. At last, loss function is calculated, for detected

bounding box (Redmon & Farhadi, 2018). The given loss function is the sum of three functions,

i.e., regression, classification, and confidence.

After detecting people in video frames, in the next step, the centroid of each detected

person bounding boxes shown as green boxes are used for distance calculation, as shown in

Fig. 3.1.2.4 (b). The detected bounding box coordinates (x,y) are used to compute the bounding

box's centroid. Fig. 3.1.2.4(c) demonstrates accepting a set of bounding box coordinates and

computing the centroid. After computing, centroid, a unique ID is assigned to each detected

bounding box. In the next step, we measure the distance between each detected centroid using

Euclidean distance. For every subsequent frame in the video stream, we firstly compute

bounding box centroids shown in Fig. 3.1.2.4 (c); and then calculate the distance (highlighted

with red lines) between each pair of detected bounding box centroids, Fig. 3.1.2.4 (d). The

information of each centroid is stored in the form of a list. Based on distance values, a threshold

 SOCIAL DISTANCE PREDICTOR

 CMRTC 31

is defined to check if any two people are less than N pixels apart or not. If the distance violates

the minimum social distance set or two people are too close, then the information is added into

the violation set. The bounding box color is initialized as green. The information is checked in

the violation set; if the current index exists in the violation set, the color is updated to red.

Furthermore, the centroid tracking algorithm is used to track the detected people in the video

sequence. The tracking algorithm also helps to keep track of people who are violating the social

distance threshold. At the output, the model displays information about the total number of

social distancing violations.

 Fig. 3.1.2.4 Social Distance Prediction

 SOCIAL DISTANCE PREDICTOR

 CMRTC 32

3.2 USE CASE DIAGRAM

 Use case diagram describes who are the actors and what all work each of the actors do

using the system. In our system there are three actors since most of the work is done by the

system itself. One is the System which evaluates the social distance in real time, the other one

is the CCTV which gives the input footage to the system and the last one is admin who checks

whether they are following the social distance or not.

 Fig. 3.2 Use Case Diagram

 SOCIAL DISTANCE PREDICTOR

 CMRTC 33

3.3 CLASS DIAGRAM

Class diagram shows the functions and methods performed by each of the actors, in the

case of our system it shows what all functions and methods have been executed by each of the

actors.

 Fig. 3.3 Class Diagram

 SOCIAL DISTANCE PREDICTOR

 CMRTC 34

3.4 Sequence Diagram

 As we have seen in views/modules, we will see how the entire system works step by

step and action by action from one actor to another in the following sequence diagram.

Sequence diagram will show all the activities in the sequence of which the system is executed

and how one activity passes on to another.

 Fig. 3.4 Sequence diagram

3.5 Activity Diagram

 SOCIAL DISTANCE PREDICTOR

 CMRTC 35

It describes the flow of the activity states.

 Fig. 3.5 Activity Diagram

 SOCIAL DISTANCE PREDICTOR

 CMRTC 36

4. IMPLEMENTATION

4.1 Social Distance Detector.py

USAGE

python social_distance_detector.py --input pedestrians.mp4

python social_distance_detector.py --input pedestrians.mp4 --output output.avi

import the necessary packages

from TheLazyCoder import social_distancing_config as config

from TheLazyCoder.detection import detect_people

from scipy.spatial import distance as dist

import numpy as np

import argparse

import imutils

import cv2

import os

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-i", "--input", type=str, default="",

 help="path to (optional) input video file")

ap.add_argument("-o", "--output", type=str, default="",

 help="path to (optional) output video file")

ap.add_argument("-d", "--display", type=int, default=1,

 help="whether or not output frame should be displayed")

args = vars(ap.parse_args())

load the COCO class labels our YOLO model was trained on

labelsPath = os.path.sep.join([config.MODEL_PATH, "coco.names"])

LABELS = open(labelsPath).read().strip().split("\n")

derive the paths to the YOLO weights and model configuration

weightsPath = os.path.sep.join([config.MODEL_PATH, "yolov3.weights"])

configPath = os.path.sep.join([config.MODEL_PATH, "yolov3.cfg"])

load our YOLO object detector trained on COCO dataset (80 classes)

print("[INFO] loading YOLO from disk...")

net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)

check if we are going to use GPU

if config.USE_GPU:

 SOCIAL DISTANCE PREDICTOR

 CMRTC 37

 # set CUDA as the preferable backend and target

 print("[INFO] setting preferable backend and target to CUDA...")

 net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)

 net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

determine only the *output* layer names that we need from YOLO

ln = net.getLayerNames()

ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]

initialize the video stream and pointer to output video file

print("[INFO] accessing video stream...")

vs = cv2.VideoCapture(args["input"] if args["input"] else 0)

writer = None

loop over the frames from the video stream

while True:

 # read the next frame from the file

 (grabbed, frame) = vs.read()

 # if the frame was not grabbed, then we have reached the end

 # of the stream

 if not grabbed:

 break

 # resize the frame and then detect people (and only people) in it

 frame = imutils.resize(frame, width=700)

 results = detect_people(frame, net, ln,

 personIdx=LABELS.index("person"))

 # initialize the set of indexes that violate the minimum social

 # distance

 violate = set()

 # ensure there are *at least* two people detections (required in

 # order to compute our pairwise distance maps)

 if len(results) >= 2:

 # extract all centroids from the results and compute the

 # Euclidean distances between all pairs of the centroids

 centroids = np.array([r[2] for r in results])

 D = dist.cdist(centroids, centroids, metric="euclidean")

 # loop over the upper triangular of the distance matrix

 for i in range(0, D.shape[0]):

 SOCIAL DISTANCE PREDICTOR

 CMRTC 38

 for j in range(i + 1, D.shape[1]):

 # check to see if the distance between any two

 # centroid pairs is less than the configured number

 # of pixels

 if D[i, j] < config.MIN_DISTANCE:

 # update our violation set with the indexes of

 # the centroid pairs

 violate.add(i)

 violate.add(j)

 # loop over the results

 for (i, (prob, bbox, centroid)) in enumerate(results):

 # extract the bounding box and centroid coordinates, then

 # initialize the color of the annotation

 (startX, startY, endX, endY) = bbox

 (cX, cY) = centroid

 color = (0, 255, 0)

 # if the index pair exists within the violation set, then

 # update the color

 if i in violate:

 color = (0, 0, 255)

 # draw (1) a bounding box around the person and (2) the

 # centroid coordinates of the person,

 cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)

 cv2.circle(frame, (cX, cY), 5, color, 1)

 # draw the total number of social distancing violations on the

 # output frame

 text = "Social Distancing Violations: {}".format(len(violate))

 cv2.putText(frame, text, (10, frame.shape[0] - 25),

 cv2.FONT_HERSHEY_SIMPLEX, 0.85, (0, 0, 255), 3)

 # check to see if the output frame should be displayed to our

 # screen

 if args["display"] > 0:

 # show the output frame

 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1) & 0xFF

 # if the `q` key was pressed, break from the loop

 if key == ord("q"):

 SOCIAL DISTANCE PREDICTOR

 CMRTC 39

 break

 # if an output video file path has been supplied and the video

 # writer has not been initialized, do so now

 if args["output"] != "" and writer is None:

 # initialize our video writer

 fourcc = cv2.VideoWriter_fourcc(*"MJPG")

 writer = cv2.VideoWriter(args["output"], fourcc, 25,

 (frame.shape[1], frame.shape[0]), True)

 # if the video writer is not None, write the frame to the output

 # video file

 if writer is not None:

 writer.write(frame)

4.2 Requirement.txt:

Note: This is the file which consists of the packages and frameworks that we have used in

the current project, before executing the project we first run a command to install these

requirements on the command line or terminal.

imutils

numpy

opencv-python

Scipy

4.3 Detection.py:

import the necessary packages

from .social_distancing_config import NMS_THRESH

from .social_distancing_config import MIN_CONF

import numpy as np

import cv2

def detect_people(frame, net, ln, personIdx=0):

 # grab the dimensions of the frame and initialize the list of

 # results

 (H, W) = frame.shape[:2]

 results = []

 # construct a blob from the input frame and then perform a forward

 # pass of the YOLO object detector, giving us our bounding boxes

 SOCIAL DISTANCE PREDICTOR

 CMRTC 40

 # and associated probabilities

 blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),

 swapRB=True, crop=False)

 net.setInput(blob)

 layerOutputs = net.forward(ln)

 # initialize our lists of detected bounding boxes, centroids, and

 # confidences, respectively

 boxes = []

 centroids = []

 confidences = []

 # loop over each of the layer outputs

 for output in layerOutputs:

 # loop over each of the detections

 for detection in output:

 # extract the class ID and confidence (i.e., probability)

 # of the current object detection

 scores = detection[5:]

 classID = np.argmax(scores)

 confidence = scores[classID]

 # filter detections by (1) ensuring that the object

 # detected was a person and (2) that the minimum

 # confidence is met

 if classID == personIdx and confidence > MIN_CONF:

 # scale the bounding box coordinates back relative to

 # the size of the image, keeping in mind that YOLO

 # actually returns the center (x, y)-coordinates of

 # the bounding box followed by the boxes' width and

 # height

 box = detection[0:4] * np.array([W, H, W, H])

 (centerX, centerY, width, height) = box.astype("int")

 # use the center (x, y)-coordinates to derive the top

 # and and left corner of the bounding box

 x = int(centerX - (width / 2))

 y = int(centerY - (height / 2))

 # update our list of bounding box coordinates,

 # centroids, and confidences

 boxes.append([x, y, int(width), int(height)])

 centroids.append((centerX, centerY))

 SOCIAL DISTANCE PREDICTOR

 CMRTC 41

 confidences.append(float(confidence))

 # apply non-maxima suppression to suppress weak, overlapping

 # bounding boxes

 idxs = cv2.dnn.NMSBoxes(boxes, confidences, MIN_CONF, NMS_THRESH)

 # ensure at least one detection exists

 if len(idxs) > 0:

 # loop over the indexes we are keeping

 for i in idxs.flatten():

 # extract the bounding box coordinates

 (x, y) = (boxes[i][0], boxes[i][1])

 (w, h) = (boxes[i][2], boxes[i][3])

 # update our results list to consist of the person

 # prediction probability, bounding box coordinates,

 # and the centroid

 r = (confidences[i], (x, y, x + w, y + h), centroids[i])

 results.append(r)

 # return the list of results

 return results

4.4 social_distancing_config.py:

base path to YOLO directory

MODEL_PATH = "yolo-coco"

initialize minimum probability to filter weak detections along with

the threshold when applying non-maxima suppression

MIN_CONF = 0.3

NMS_THRESH = 0.3

boolean indicating if NVIDIA CUDA GPU should be used

USE_GPU = False

define the minimum safe distance (in pixels) that two people can be

from each other

MIN_DISTANCE = 50

 SOCIAL DISTANCE PREDICTOR

 CMRTC 42

5. SCREEN SHOTS

5.1 INTRODUCTION:

 The below are the images that shows the input sample video and the output sample

video processed by the system, here the input sample video is divided into frames and those

frames are been given as the input and the system is been acted upon those frames and detect

the social distance between people in each frame and classifies people in violation set as red

and those who are not in violation set in green.

5.2 Input Sample Frames:

 Fig. 5.2.1 input sample frame

 SOCIAL DISTANCE PREDICTOR

 CMRTC 43

 Fig. 5.2.2 input sample frame

 Fig. 5.2.3 input sample frame

 SOCIAL DISTANCE PREDICTOR

 CMRTC 44

 Fig. 5.2.4 input sample frame

5.3 Output Processed Sample Frames:

In these output processed sample frames the system processes the and runs yolo on

each of the input frame and classifies the human subjects, now here it measures the Euclidean

distance between each of the classified subject’s centroid and verifies whether they are under

social distance or not, the subjects which tend to follow social distance are in green boxes and

the ones who don’t are in the red boxes.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 45

 Fig. 5.3.1 output processed sample frame

 Fig. 5.3.2 output processed sample frame

 SOCIAL DISTANCE PREDICTOR

 CMRTC 46

 Fig. 5.3.3 output processed sample frame

 Fig. 5.3.4 output processed sample frame

 SOCIAL DISTANCE PREDICTOR

 CMRTC 47

6.TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, subassemblies, assemblies and/or a finished product. It is the

process of exercising software with the intent of ensuring that the Software system meets its

requirements and user expectations and does not fail in an unacceptable manner. There are

various types of tests. Each test type addresses a specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal program logic

is functioning properly, and that program inputs produce valid outputs. All decision branches

and internal code flow should be validated. It is the testing of individual software units of the

application .it is done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform

basic tests at component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process performs accurately

to the documented specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if

they actually run as one program. Testing is event driven and is more concerned with the basic

outcome of screens or fields. Integration tests demonstrate that

although the components were individually satisfied, as shown by successfully unit testing, the

combination of components is correct and consistent. Integration testing is specifically aimed

at exposing the problems that arise from the combination of components.

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are available

as specified by the business and technical requirements, system documentation, and user

manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 48

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems : interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identifying

Business process flows; data fields, predefined processes.

6.3 TEST CASES

 Test Case is a set of conditions or variables under which a tester will determine whether

a system under test satisfies requirements or works correctly. The process of developing test

cases can also help find problems in the requirements or design of an application. The test cases

are displayed in the Screenshots chapter. The input frames of the input sample video given by

the CCTV are the sample test cases.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 49

7. CONCLUSION

7.1 PROJECT CONCLUSION

In this work, a deep learning-based social distance monitoring framework is presented

using an overhead perspective. The pre-trained YOLOv3 paradigm is used for human

detection. As a person's appearance, visibility, scale, size, shape, and pose vary significantly

from an overhead view, the transfer learning method is adopted to improve the pre-trained

model's performance. The model is trained on an overhead data set, and the newly trained layer

is appended with the existing model. To the best of our knowledge, this work is the first attempt

that utilized transfer learning for a deep learning-based detection paradigm, used for overhead

perspective social distance monitoring. The detection model gives bounding box information,

containing centroid coordinates information. Using the Euclidean distance, the pairwise

centroid distances between detected bounding boxes are measured. To check social distance

violations between people, an approximation of physical distance to the pixel is used, and a

threshold is defined. A violation threshold is used to check if the distance value violates the

minimum social distance set or not. Furthermore, a centroid tracking algorithm is used for

tracking people in the scene. Experimental results indicated that the framework efficiently

identifies people walking too close and violates social distancing; also, the transfer learning

methodology increases the detection model's overall efficiency and accuracy. For a pre-trained

model without transfer learning, the model achieves detection accuracy of 92% and 95% with

transfer learning. The tracking accuracy of the model is 95%.

7.2 FUTURE ENHANCEMENTS

The work may be improved in the future for different indoor and outdoor environments.

Different detection and tracking algorithms might be used to help track the person or people

who are violating or breaching the social distancing threshold.

 SOCIAL DISTANCE PREDICTOR

 CMRTC 50

8. BIBLIOGRAPHY

8.1 REFERENCES

1. Adlhoch, C. (2020). https://www.ecdc.europa.eu/sites/default/files/documents/covid-

19-social-distancing-measuresg-guide-second-update.pdf.

2. Adolph C., Amano K., Bang-Jensen B., Fullman N., Wilkerson J. medRxiv. 2020

[Google Scholar]

3. Ahmad M., Ahmed I., Ullah K., Khan I., Adnan A. 2018 9th IEEE annual ubiquitous

computing, electronics mobile communication conference (UEMCON) 2018. pp.

746–752. [CrossRef] [Google Scholar]

4. Ahmad M., Ahmed I., Ullah K., Khan I., Khattak A., Adnan A. International Journal

of Advanced Computer Science and Applications. 2019;10 doi:

10.14569/IJACSA.2019.0100367. [CrossRef] [Google Scholar]

5. Ahmad M., Ahmed I., Khan F.A., Qayum F., Aljuaid H. International Journal of

Distributed Sensor Networks. 2020;16 1550147720934738. [Google Scholar]

6. Ahmed I., Adnan A. 2017. Cluster computing; pp. 1–22. [Google Scholar]

7. Ahmed I., Ahmad A., Piccialli F., Sangaiah A.K., Jeon G. IEEE Internet of Things

Journal. 2018;5:1598–1605. [Google Scholar]

8. Ahmed I., Ahmad M., Nawaz M., Haseeb K., Khan S., Jeon G. Computer

Communications. 2019;147:188–197. [Google Scholar]

9. Ahmed I., Din S., Jeon G., Piccialli F. IEEE Internet of Things Journal. 2019 [Google

Scholar]

10. Ahmed I., Ahmad M., Adnan A., Ahmad A., Khan M. International Journal of

Machine Learning and Cybernetics. 2019:1–12. [Google Scholar]

11. Ainslie K.E., Walters C.E., Fu H., Bhatia S., Wang H., Xi X. Wellcome Open

Research. 2020;5 [Google Scholar]

12. B. News (2020). Online. https://www.bbc.co.uk/news/world-asia-china51217455,

(Accessed 23 January 2020).

13. Brunetti A., Buongiorno D., Trotta G.F., Bevilacqua V. Neurocomputing.

2018;300:17–33. [Google Scholar]

14. Chakraborty B.A. 2021. Springer. [Google Scholar]

15. Chakraborty C., Banerjee A., Garg L., Coelho Rodrigues J.J.P. Series Studies in Big

Data. 2021;80:98–136. doi: 10.1007/978-981-15-8097-0. [CrossRef] [Google

Scholar]

16. Choi J.-W., Moon D., Yoo J.-H. ETRI Journal. 2015;37:551–561. [Google Scholar]

17. Ferguson N.M., Cummings D.A., Cauchemez S., Fraser C., Riley S., Meeyai A.

Nature. 2005;437:209–214. [PubMed] [Google Scholar]

18. Girshick R. Proceedings of the IEEE international conference on computer vision.

2015. pp. 1440–1448. [Google Scholar]

19. Girshick R., Donahue J., Darrell T., Malik J. Proceedings of the IEEE conference on

computer vision and pattern recognition. 2014. pp. 580–587. [Google Scholar]

 SOCIAL DISTANCE PREDICTOR

 CMRTC 51

20. Online. https://www.health.harvard.edu/diseases-and-conditions/preventing-the-

spread-of-the-coronavirus (Accessed 18 August 2020).

21. Harvey A., LaPlace J. 2019. Megapixels: Origins, ethics, and privacy implications of

publicly available face recognition image datasets. [Google Scholar]

22. Iqbal M.S., Ahmad I., Bin L., Khan S., Rodrigues J.J. 2020. Transactions on

Emerging Telecommunications Technologies; p. e4017. [Google Scholar]

23. Krizhevsky A., Sutskever I., Hinton G.E. Advances in neural information processing

systems. 2012. pp. 1097–1105. [Google Scholar]

24. Lin T.-Y., Maire M., Belongie S., Hays J., Perona P., Ramanan D. European

conference on computer vision. Springer; 2014. pp. 740–755. [Google Scholar]

25. Migniot C., Ababsa F. Journal of Real-Time Image Processing. 2016;11:769–784.

[Google Scholar]

26. N. H. C. of the Peoples Republic of China (2020). Online. http://en.nhc.gov.cn/2020-

03/20/c78006.htm (Accessed 20 March 2020).

27. Nguyen C.T., Saputra Y.M., Van Huynh N., Nguyen N.-T., Khoa T.V., Tuan B.M.

2020. Enabling and emerging technologies for social distancing: a comprehensive

survey and open problems.arXiv:2005.02816 [Google Scholar]

28. Patrick S.P., dos Santos R.S., de Souza L.B.M. 22nd International Conference on E-

Health Networking, Applications and Services (IEEE Healthcom 2020); Shenzhen,

China, December 12–15; 2020. [Google Scholar]

29. Pouw C.A., Toschi F., van Schadewijk F., Corbetta A. 2020. Monitoring physical

distancing for crowd management: Real-time trajectory and group

analysis.arXiv:2007.06962 [PMC free article] [PubMed] [Google Scholar]

30. Prem K., Liu Y., Russell T.W., Kucharski A.J., Eggo R.M., Davies N. The Lancet

Public Health. 2020 [Google Scholar]

31. Punn N.S., Sonbhadra S.K., Agarwal S. medRxiv. 2020 [Google Scholar]

32. Punn N.S., Sonbhadra S.K., Agarwal S. 2020. Monitoring COVID-19 social

distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort

techniques.arXiv:2005.01385 [Google Scholar]

33. Ramadass L., Arunachalam S., Sagayasree Z. International Journal of Pervasive

Computing and Communications. 2020 [Google Scholar]

34. Redmon J., Divvala S., Girshick R., Farhadi A. Proceedings of the IEEE conference

on computer vision and pattern recognition. 2016. pp. 779–788. [Google Scholar]

35. Redmon J., Farhadi A. 2018. YOLOv3: An incremental

improvement.arXiv:1804.02767 [Google Scholar]

36. Ren S., He K., Girshick R., Sun J. Advances in neural information processing

systems. 2015. pp. 91–99. [Google Scholar]

37. Robakowska M., Tyranska-Fobke A., Nowak J., Slezak D., Zuratynski P.,

Robakowski P. Disaster and Emergency Medicine Journal. 2017;2:129–134. [Google

Scholar]

38. Sathyamoorthy A.J., Patel U., Savle Y.A., Paul M., Manocha D. 2020. COVID-robot:

Monitoring social distancing constraints in crowded scenarios.arXiv:2008.06585

[Google Scholar]

 SOCIAL DISTANCE PREDICTOR

 CMRTC 52

39. Simonyan K., Zisserman A. 2014. Very deep convolutional networks for large-scale

image recognition.arXiv:1409.1556 [Google Scholar]

40. Online. https://www.statista.com/chart/21198/effect-of-social-distancing-signer-lab/

(Accessed 18 August 2020).

41. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D. Proceedings of the

IEEE conference on computer vision and pattern recognition. 2015. pp. 1–9. [Google

Scholar]

42. W. C. D. C. Dashboard (Online). https://covid19.who.int/ (Accessed 23 August 2020).

43. W.H. Organization (2020). https://www.who.int/emergencies/diseases/novel-corona-

virus-2019 (Accessed 02 May 2020).

44. WHO (Online). https://www.who.int/dg/speeches/detail/2020 (Accessed 12 March

2020).

45. Yang D., Yurtsever E., Renganathan V., Redmill K.A., Özgüner Ü. 2020. A vision-

based social distancing and critical density detection system for COVID-

19.arXiv:2007.03578 [Google Scholar]

46. Yash Chaudhary D.G., Mehta M. 22nd international conference on E-health

networking, applications and services (IEEE Healthcom 2020); Shenzhen, China,

December 12–15, 2020; 2020. [Google Scholar]

Github link:

https://github.com/Ankith-Sai/Social-Distance-Prediction-

IJARESM

ISSN: 2455-6211, New Delhi, India
International Journal of All Research Education & Scientific Methods

An ISO & UGC Certified Peer-Reviewed Multi-disciplinary Journal

K. Ankith Sai Reddy

CMR Technical Campus

TITLE OF PAPER

Social Distance Predictor Using Deep Learning

has been published in

IJARESM, Impact Factor: 7.429, Volume 9 Issue 6, June- 2021

Paper Id: IJARESM/June21

 Date: 11-06-2021

Website: www.ijaresm.com
Email: editor.ijaresm@gmail.com

Authorized Signatory

Certificate of Publication

http://www.ijaresm.com/
mailto:editor.ijaresm@gmail.com

IJARESM

ISSN: 2455-6211, New Delhi, India
International Journal of All Research Education & Scientific Methods

An ISO & UGC Certified Peer-Reviewed Multi-disciplinary Journal

V. Prashanth

CMR Technical Campus

TITLE OF PAPER

Social Distance Predictor Using Deep Learning

has been published in

IJARESM, Impact Factor: 7.429, Volume 9 Issue 6, June- 2021

Paper Id: IJARESM/June21

 Date: 11-06-2021

Website: www.ijaresm.com
Email: editor.ijaresm@gmail.com

Authorized Signatory

Certificate of Publication

http://www.ijaresm.com/
mailto:editor.ijaresm@gmail.com

IJARESM

ISSN: 2455-6211, New Delhi, India
International Journal of All Research Education & Scientific Methods

An ISO & UGC Certified Peer-Reviewed Multi-disciplinary Journal

Ch. Dilip Goud

CMR Technical Campus

TITLE OF PAPER

Social Distance Predictor Using Deep Learning

has been published in

IJARESM, Impact Factor: 7.429, Volume 9 Issue 6, June- 2021

Paper Id: IJARESM/June21

 Date: 11-06-2021

Website: www.ijaresm.com
Email: editor.ijaresm@gmail.com

Authorized Signatory

Certificate of Publication

http://www.ijaresm.com/
mailto:editor.ijaresm@gmail.com

International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211

 Volume 9, Issue 6, June -2021, Impact Factor: 7.429, Available online at: www.ijaresm.com

IJARESM Publication, India >>>> www.ijaresm.com Page 1078

Social Distance Predictor Using Deep Learning

D. Vigneshwar Rao
 1

, K. Ankith Sai Reddy
2
, V. Prashanth

3
, Ch. Dilip Goud

4

1
Assistant Professor, CMR Technical Campus

2,3,4
CMR Technical Campus

---*****************---

ABSTRACT

The objective of the model is to make the detection of social distance between people who are roaming on the roads

and the footpaths or anywhere outdoors or in the society easy and more reliable. We know that when a naked

human eye monitors the, accuracy is considerably low and also a human eye cannot monitor more than one group at

a time. Therefore this system is introduced to make the process easy, accurate and consistent in monitoring people at

all times by using 24/7 surveillance cameras. This system is using the YoloV3 (You Only Look Once) which is the

fastest object detection algorithm and contains several classes of objects for object detection. This algorithm is not

only used for object detection but also used in finding the position of the object and tracking the movement of the

object from one position to another. This feature will be used in finding the distance of the objects whose coordinates

will further help in finding out the distance between each object in real time and determine whether they are

following social distancing or not.

Keywords: Social Distance, Object Detection Algorithm, YOLO.

INTRODUCTION

The project titled as “Social Distance Predictor” is a Machine Learning based application which trains itself and improves

every time on new scenarios. This project aims to design a social distance predictor which verifies the distance between two

or more people is safe and is according to social distance norms provided by the government body. This Project helps

monitor social distance between people in real time and help admins warn the people at public places. This system is more

efficient, effective and accurate. At these hard times of covid, this helps in reducing immense man power for monitoring

people and also drastically increases the accuracy to help people maintain social distance. Covid - 19 is a deadly and a very

dangerous disease which is causing chaos in every country and every place possible in this world. There have been strict

rules created by the national body and world organizations to help prevent this deadly virus from spreading into

communities. One of which is to maintain Social Distance, people must maintain a distance of 1.5 Meters between each

other in order to maintain social distance. We know that in public places where there is a huge crowd it is difficult to

monitor people who maintain social distance especially in areas where there is a dense population. In order to do so we

have created this system which is based on a machine learning model where it measures the social distance between two or

more people in real time with the help of CCTV Cameras. The live footage from the CCTV cameras will go to the system

where the system processes the social distance between two people and sends the output video to the admin and thus the

admin could announce and take preliminary precautions.

Overview
The ongoing COVID-19 corona virus outbreak has caused a global disaster with its deadly spreading. Due to the absence of

effective remedial agents and the shortage of immunizations against the virus, population vulnerability increases. In the

current situation, as there are no vaccines available; therefore, social distancing is thought to be an adequate precaution

(norm) against the spread of the pandemic virus. The risks of virus spread can be minimized by avoiding physical contact

among people. The purpose of this work is, therefore, to provide a deep learning platform for social distance tracking using

an overhead perspective. The framework uses the YOLOv3 object recognition paradigm to identify humans in video

sequences. The transfer learning methodology is also implemented to increase the accuracy of the model.

MATHEMATICAL FORMULATION

Conf(p)=Pr(p)×IOU(pred,actual)

IoU(pred,actual)=areaBoxT∩BoxP/BoxT∪BoxP.

International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211

 Volume 9, Issue 6, June -2021, Impact Factor: 7.429, Available online at: www.ijaresm.com

IJARESM Publication, India >>>> www.ijaresm.com Page 1079

Where;

● Pr(p) indicates whether the person present is in the detected bounding box or not.

● IoU(pred,actual) determines the Intersection Over Union of the actual and predicted bounding box.

● where the ground truth box (actual) manually labeled in the training data set is represented with BoxT, and the

predicted bounding box is displayed as BoxP.

ANALYSIS

The testing results of the social distance framework using a pre-trained model (Redmon & Farhadi, 2018) has been

visualized. The testing results are evaluated using different video sequences. The people in the video sequences are freely

moving in the scenes; it can be seen from sample frames that the individual's visual appearance is not identical to the frontal

or side view. The person's size is also varying at different locations. Since the model only considers human (person) class;

therefore, only an object having an appearance like a human is detected by a pre-trained model. The pre-trained model

delivers good results and detects various size person bounding boxes, as shown with green rectangles.

CONCLUSION

In this work, a deep learning-based social distance monitoring framework is presented using an overhead perspective. The

pre-trained YOLOv3 paradigm is used for human detection. As a person's appearance, visibility, scale, size, shape, and

pose vary significantly from an overhead view, the transfer learning method is adopted to improve the pre-trained model's

performance. The model is trained on an overhead data set, and the newly trained layer is appended with the existing

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603992/#bib0175

International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211

 Volume 9, Issue 6, June -2021, Impact Factor: 7.429, Available online at: www.ijaresm.com

IJARESM Publication, India >>>> www.ijaresm.com Page 1080

model. To the best of our knowledge, this work is the first attempt that utilized transfer learning for a deep learning-based

detection paradigm, used for overhead perspective social distance monitoring. The detection model gives bounding box

information, containing centroid coordinates information. Using the Euclidean distance, the pairwise centroid distances

between detected bounding boxes are measured. To check social distance violations between people, an approximation of

physical distance to the pixel is used, and a threshold is defined. A violation threshold is used to check if the distance value

violates the minimum social distance set or not. Furthermore, a centroid tracking algorithm is used for tracking people in

the scene. Experimental results indicated that the framework efficiently identifies people walking too close and violates

social distancing; also, the transfer learning methodology increases the detection model's overall efficiency and accuracy.

For a pre-trained model without transfer learning, the model achieves detection accuracy of 92% and 95% with transfer

learning. The tracking accuracy of the model is 95%.

REFERENCES

[1] Adlhoch,C.(2020). https://www.ecdc.europa.eu/sites/default/files/documents/covid19-social-distancing-measuresg-

guide-second-update.pdf.

[2] Adolph C., Amano K., Bang-Jensen B., Fullman N., Wilkerson J. medRxiv. 2020 [Google Scholar]

[3] Ahmad M., Ahmed I., Ullah K., Khan I., Adnan A. 2018 9th IEEE annual ubiquitous computing, electronics mobile

communication conference (UEMCON) 2018. pp. 746–752. [CrossRef] [Google Scholar]

[4] Ahmad M., Ahmed I., Ullah K., Khan I., Khattak A., Adnan A. International Journal of Advanced Computer Science

and Applications. 2019;10 doi: 10.14569/IJACSA.2019.0100367. [CrossRef] [Google Scholar]

[5] Ahmad M., Ahmed I., Khan F.A., Qayum F., Aljuaid H. International Journal of Distributed Sensor Networks. 2020;16

1550147720934738. [Google Scholar]

[6] Ahmed I., Adnan A. 2017. Cluster computing; pp. 1–22. [Google Scholar]

[7] Ahmed I., Ahmad A., Piccialli F., Sangaiah A.K., Jeon G. IEEE Internet of Things Journal. 2018;5:1598–1605.

[Google Scholar]

[8] Ahmed I., Ahmad M., Nawaz M., Haseeb K., Khan S., Jeon G. Computer Communications. 2019;147:188–197.

[Google Scholar]

[9] Ahmed I., Din S., Jeon G., Piccialli F. IEEE Internet of Things Journal. 2019 [Google Scholar]

[10] Ahmed I., Ahmad M., Adnan A., Ahmad A., Khan M. International Journal of Machine Learning and Cybernetics.

2019:1–12. [Google Scholar] 11. Ainslie K.E., Walters C.E., Fu H., Bhatia S., Wang H., Xi X. Well

